Hunting Hurricanes: NASA's Field Programs Exploring Hurricanes Using Satellites, Supercomputers and High Altitude Aircraft

RESEARCH SYNERGY

Models

Aircraft

NASA Satellite Investigations

NASA Earth Science Spacecraft Observe the Birth and Intensification of Deadly Category 5 Hurricane Katrina

Hurricane Katrina Heats up in the Gulf

SSH highs at the center of the Loop Current reached 50-70cm in this image from August 27, 2005. Wind speeds of Hurricane Katrina, indicated in white along the path of the storm, reached highs of 173 mph.

Image credit: NOAA

Maximum wind speeds of **Hurricane Katrina increased** dramatically as that storm passed over the warm waters of the Loop Current in the Gulf of Mexico in late August 2005. The storm evolved quickly from a category 3 to category 5 event in a matter of 9 hours as it drew heat from the Loop Current and a large warm core eddy evident in the sea surface height derived from merged TOPEX/Poseidon, Jason-1, GFO, and Envisat altimeter data processed by the Univ. of Colorado's CCAR group.

(R. Leben, G. Born)

Hurricane Research: Advanced Satellites

TRMM Microwave Imager (TMI)

TC Intensity Change - Sudden Weakening - Eyewall Replacement

Near-Real Time 3D Anatomy of Hurricanes

trmm.gsfc.nasa.gov

TRMM Images Impressive Rain Structures in Hurricane Rita

- Sept 19, 2005 3D rain isosurface of TS Rita
- Colors emphasize vertical height structure
- Twin 18 km deep hot towers fired off in first of two convective bursts in Rita's core presaging her rapid intensification
- This first burst occurred when Rita was positioned over 33° C SSTs in the Bahama Banks

Rita as Cat 5 Sept 22, 2005

Eyewall Replacement Cycle (ERC) commencing

TRMM Provides Clues On Hurricane Intensification

Unusually deep convective clouds hold clues to intensification.

The frequency of convective towers in eyewalls of intensifying and non-intensifying cyclones (red and black lines) - towers exceeding 14.5 km height incur 71% chance of TC intensification; the probability monotonically decreases as hot tower height decreases

- T.C. intensity is poorly understood & forecast.
- Intensification may be associated with unusually deep convective towers in the eyewall.
- The TRMM Precipitation Radar is the only instrument in space with sufficient vertical resolution to test this theory.

Kelly, Stout, Halverson, NASA GSFC

Energy Release in Convective Bursts

Ed Rodgers et al. 2000

Contribution of TC Rain to Tropics

TRMM Tracks Changes In Rainfall Structure and Accumulation

• By itself, TRMM provides detailed views of hurricane structure and structure change (example here is Hurricane Isabel in 2003).

• Combined with other satellites, the TRMM multi-satellite precipitation analysis (3B42) helps map rainfall evolution in hurricanes.

Available from http://trmm.gsfc.nasa.gov/

Hurricane Katrina (2005) Multi-Satellite-Derived Accumulated Rainfall

NASA Field Campaigns

NASA's Heritage of Hurricane Research Field Programs

- Joint partnership with NOAA HRD
- Blending of in situ and satellite data sets
- Improved parameterization of models
- Data assimilation to improve models
- Technology testbed (i.e. ER-2 dropsonde, Global Hawk)

Coordinated Aircraft Sampling

Vertical Structure of Stratiform Rain Lagrangian Microphysics Spiral

NASA's DC-8 and Scientific Serendipity

CAMEX Scientific Missions

← Halverson loads a dropsonde in the DC-8 during a mission

Interior view of DC-8 scientific instrumentation

NASA ER-2: Virtual Satellite

MODIS

Imager

TRMM Microwave

Lightning Imaging Sensor

Precipitation Radar

T.C. Oliver Research - TOGA COARE

Simpson et al., 1997, 1998

ER-2 Doppler Radar (EDOP) Views Detailed Super-Anatomy Of Intense Hurricane Emily During NASA's TCSP Experiment

Vertical slice showing rain structure across the entire storm - 1:30 - 2:00 AM CST July 17, 2005

G. Heymsfield

CAMEX: Conceptual Models for TC Hot Towers & Intensity Change

Hurricane Bonnie, 1998

Tropical Storm Chantal, 2001

Heymsfield et al., 2001, 2006

African SAL: Impact on tropical cyclogenesis - uncertain, but a key component in an oceanic basin marginally suitable for hurricane generation; examine effects of SAL dust composition & stratification on microphyiscs, thermodynamic instability, shear, airmass dessication

Wave-Depression Transition

Karyampudi et al., 1988, 1999, 2002

Max Wind 63 kt; Temperature increase in 'eye' is 6°K

Radius of max wind ~~ 40-50 km

M. Douglas,E. Zipser

Suppression of Atlantic TCs: African Dust

Lau & Kim, 2007

- Large amount of African dust sequestered over WATL in summer-fall, in 2006 vs. 2005
- The dust dimmed incoming solar energy, cooling the SST, reducing rainfall & storminess

NASA GRIP (2010) - Genesis and Rapid Intensification Processes

Global Hawks

NASA

Key Paradigm Shifts:

- Reconnaissance > Surveillance
- Geosynchronous simulator
- Telescience

DFRC Global Hawk Operations Center (GHOC)

Global Hawk

Payload System Communications Architecture

"Telescience"

Dave Fratello, Payload Manager NASA DFRC

NASA Numerical Modeling

Climate Model Simulations of Hurricane Katrina

- 1/8 deg grid resolution
- simulated RMW, storm intensity, track
- cumulus parameterization not needed

B. - W. Shen et al., 2005, 2006

CAMEX-4 Hurricane Erin "Optimal Data Assimilation" Flight

FSU Model Results for Hurricane Erin using CAMEX-4 LASE Data

T. N. Krishnamurti

120hr forecast track of Hurricane Erin IC: 12UTC 10 Sep 2001 Intensity errors (in m/s) of Hurricane Erin IC: 12UTC 10Sep 2001

Hurricane Hot Towers

• TRMM observations of Bonnie and other hurricanes show towering thunderclouds, called hot towers, often signify the onset of intensification.

Hurricane Bonnie, 8/22/1998
Tallest tower is >15 km in height

High resolution (MM5) computer simulation of Hurricane Bonnie

- Model reveals that intense vortices in the eyewall may help formation and control movement of hot towers
- Tower updrafts account for more than half of the cloud condensation in the eyewall.

Happy Hurricane Hunting, NASA!

http://www.nasa.gov/mission_pages/hurricanes/main/index.html